Bioknowledgy
questioning, investigating and understanding
  • Home
    • About
  • IB Biology
    • Syllabus
    • General Resources
    • Practical scheme of work >
      • Practical activities (Labs)
      • Individual investigation
      • IB Write
  • Core
    • 1. Cell biology >
      • 1.1 Introduction to cells
      • 1.2 Ultrastructure of cells
      • 1.3 Membrane structure
      • 1.4 Membrane transport
      • 1.5 The origin of cells
      • 1.6 Cell division
    • 2. Molecular biology >
      • 2.1 Molecules to metabolism
      • 2.2 Water
      • 2.3 Carbohydrates and lipids
      • 2.4 Proteins
      • 2.5 Enzymes
      • 2.6 Structure of DNA and RNA
      • 2.7 DNA replication, transcription and translation
      • 2.8 Cell respiration
      • 2.9 Photosynthesis
    • 3. Genetics >
      • 3.1 Genes
      • 3.2 Chromosomes
      • 3.3 Meiosis
      • 3.4 Inheritance
      • 3.5 Genetic modification and biotechnology
    • 4. Ecology >
      • 4.1 Species, communities and ecosystems
      • 4.2 Energy flow
      • 4.3 Carbon cycling
      • 4.4 Climate change
    • 5. Evolution and biodiversity >
      • 5.1 Evidence for evolution
      • 5.2 Natural selection
      • 5.3 Classification of biodiversity
      • 5.4 Cladistics
    • 6. Human physiology >
      • 6.1 Digestion and absorption
      • 6.2 The blood system
      • 6.3 Defence against infectious disease
      • 6.4 Gas exchange
      • 6.5 Neurons and synapses
      • 6.6 Hormones, homeostasis and reproduction
  • Additional higher level (AHL)
    • 7. Nucleic acids >
      • 7.1 DNA structure and replication
      • 7.2 Transcription and gene expression
      • 7.3 Translation
    • 8. Metabolism, cell respiration and photosynthesis >
      • 8.1 Metabolism
      • 8.2 Cell respiration
      • 8.3 Photosynthesis
    • 9. Plant biology >
      • 9.1 Transport in the xylem of plants
      • 9.2 Transport in the phloem of plants
      • 9.3 Growth in plants
      • 9.4 Reproduction in plants
    • 10. Genetics and evolution >
      • 10.1 Meiosis
      • 10.2 Inheritance
      • 10.3 Gene pools and speciation
    • 11. Animal physiology >
      • 11.1 Antibody production and vaccination
      • 11.2 Movement
      • 11.3 The kidney and osmoregulation
      • 11.4 Sexual reproduction
  • Options
    • A. Neurobiology and behaviour >
      • A.1 Neural development
      • A.2 The human brain
      • A.3 Perception of stimuli
      • A.4 Innate and learned behaviour (AHL)
      • A.5 Neuropharmacology (AHL)
      • A.6 Ethology (AHL)
    • B. Biotechnology and bioinformatics
    • C. Ecology and conservation >
      • C.1 Species and communities
      • C.2 Communities and ecosystems
      • C.3 Impacts of humans on ecosystems
      • C.4 Conservation of biodiversity
      • C.5 Population ecology (AHL)
      • C.6 Nitrogen and phosphorus cycles (AHL)
    • D. Human physiology
  • Giving back - BioKQQAnswers

Essential idea: Reproduction in flowering plants is influenced by the biotic and abiotic environment.

The commonly held view is that flowering is influenced by abiotic factors such as day length. The importance of biotic factors such as pollination (e.g. by bats), and seed dispersal whether involuntarily or voluntarily (e.g. fruit ingestion) is being increasingly realised. Biotic factors commonly influence flowering by introducing a selective pressure, which influences the genetics of a population. The control of flowering is ultimately controlled by gene expression.

Understandings, applications and skills

9.4.U1 Flowering involves a change in gene expression in the shoot apex.
9.4.U2 The switch to flowering is a response to the length of light and dark periods in many plants.
9.4.U3 Success in plant reproduction depends on pollination, fertilization and seed dispersal. [Students should understand the differences between pollination, fertilization and seed dispersal but are not required to know the details of each process.]
9.4.U4 Most flowering plants use mutualistic relationships with pollinators in sexual reproduction.
9.4.A1 Methods used to induce short-day plants to flower out of season. [Flowering in so-called short-day plants such as chrysanthemums, is stimulated by long nights rather than short days.]
9.4.S1 Drawing internal structure of seeds.
9.4.S2 Drawing of half-views of animal-pollinated flowers.
9.4.S3 Design of experiments to test hypotheses about factors affecting germination.
[Text in square brackets indicates guidance notes]

Starters

Two interesting and thought provoking video lectures from TED.

Presentation and Notes

The presentation is designed to help your understanding. The notes outline is intended to be used as a framework for the development of student notes to aid revision.
Download presentation


Vocabulary

Correct use of terminology is a key skill in Biology. It is essential to use key terms correctly when communicating your understanding, particularly in assessments. Use the quizlet flashcards or other tools such as learn, scatter, space race, speller and test to help you master the vocabulary.
Use the Cornell style template to collate your own notes for Topic 9 - Plant biology


Quick quiz

Use the BioK Quick Quiz on 9.4 Reproduction in Plants (as directed) to check your understanding of the topic.

Nature of science

Paradigm shift—more than 85% of the world’s 250,000 species of flowering plant depend on pollinators for reproduction. This knowledge has led to protecting entire ecosystems rather than individual species. (2.3)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.Creative Commons License
Proudly powered by Weebly