Bioknowledgy
questioning, investigating and understanding
  • Home
    • About
  • IB Biology
    • Syllabus
    • General Resources
    • Practical scheme of work >
      • Practical activities (Labs)
      • Individual investigation
      • IB Write
  • Core
    • 1. Cell biology >
      • 1.1 Introduction to cells
      • 1.2 Ultrastructure of cells
      • 1.3 Membrane structure
      • 1.4 Membrane transport
      • 1.5 The origin of cells
      • 1.6 Cell division
    • 2. Molecular biology >
      • 2.1 Molecules to metabolism
      • 2.2 Water
      • 2.3 Carbohydrates and lipids
      • 2.4 Proteins
      • 2.5 Enzymes
      • 2.6 Structure of DNA and RNA
      • 2.7 DNA replication, transcription and translation
      • 2.8 Cell respiration
      • 2.9 Photosynthesis
    • 3. Genetics >
      • 3.1 Genes
      • 3.2 Chromosomes
      • 3.3 Meiosis
      • 3.4 Inheritance
      • 3.5 Genetic modification and biotechnology
    • 4. Ecology >
      • 4.1 Species, communities and ecosystems
      • 4.2 Energy flow
      • 4.3 Carbon cycling
      • 4.4 Climate change
    • 5. Evolution and biodiversity >
      • 5.1 Evidence for evolution
      • 5.2 Natural selection
      • 5.3 Classification of biodiversity
      • 5.4 Cladistics
    • 6. Human physiology >
      • 6.1 Digestion and absorption
      • 6.2 The blood system
      • 6.3 Defence against infectious disease
      • 6.4 Gas exchange
      • 6.5 Neurons and synapses
      • 6.6 Hormones, homeostasis and reproduction
  • Additional higher level (AHL)
    • 7. Nucleic acids >
      • 7.1 DNA structure and replication
      • 7.2 Transcription and gene expression
      • 7.3 Translation
    • 8. Metabolism, cell respiration and photosynthesis >
      • 8.1 Metabolism
      • 8.2 Cell respiration
      • 8.3 Photosynthesis
    • 9. Plant biology >
      • 9.1 Transport in the xylem of plants
      • 9.2 Transport in the phloem of plants
      • 9.3 Growth in plants
      • 9.4 Reproduction in plants
    • 10. Genetics and evolution >
      • 10.1 Meiosis
      • 10.2 Inheritance
      • 10.3 Gene pools and speciation
    • 11. Animal physiology >
      • 11.1 Antibody production and vaccination
      • 11.2 Movement
      • 11.3 The kidney and osmoregulation
      • 11.4 Sexual reproduction
  • Options
    • A. Neurobiology and behaviour >
      • A.1 Neural development
      • A.2 The human brain
      • A.3 Perception of stimuli
      • A.4 Innate and learned behaviour (AHL)
      • A.5 Neuropharmacology (AHL)
      • A.6 Ethology (AHL)
    • B. Biotechnology and bioinformatics
    • C. Ecology and conservation >
      • C.1 Species and communities
      • C.2 Communities and ecosystems
      • C.3 Impacts of humans on ecosystems
      • C.4 Conservation of biodiversity
      • C.5 Population ecology (AHL)
      • C.6 Nitrogen and phosphorus cycles (AHL)
    • D. Human physiology
  • Giving back - BioKQQAnswers

Essential idea: There is overwhelming evidence for the evolution of life on Earth.

Above is an image of fossilised primitive vascular plant called a horsetail. Fossils are just one example of evidence for evolution along with homologous structures, the universality of DNA, and examples such as antibiotic resistance.

Understandings, Applications and Skills

5.1.U1 Evolution occurs when heritable characteristics of a species change.
5.1.U2 The fossil record provides evidence for evolution.
5.1.U3 Selective breeding of domesticated animals shows that artificial selection can cause evolution.
5.1.U4 Evolution of homologous structures by adaptive radiation explains similarities in structure when there are differences in function.
5.1.U5 Populations of a species can gradually diverge into separate species by evolution.
5.1.U6 Continuous variation across the geographical range of related populations matches the concept of gradual divergence.
5.1.A1 Development of melanistic insects in polluted areas.
5.1.A2 Comparison of the pentadactyl limb of mammals, birds, amphibians and reptiles with different methods of locomotion.
[Text in square brackets indicates guidance notes]

Presentation and notes

The presentation is designed to help your understanding. The notes outline is intended to be used as a framework for the development of student notes to aid revision.
Download presentation


Vocabulary

Correct use of terminology is a key skill in Biology. It is essential to use key terms correctly when communicating your understanding, particularly in assessments. Use the quizlet flashcards or other tools such as learn, scatter, space race, speller and test to help you master the vocabulary.
Use the Cornell style template to collate your own notes for Topic 5.1 Evidence for evolution.


Quick quiz

Use the BioK Quick Quiz on 5.1 Evidence for evolution (as directed) to check your understanding of the topic.

Weblinks

Evolution
Exploring evolution by EDA
The Top Ten Daily Consequences of Having Evolved by The
Smithsonian
Exploring evolution by Education development center

Fossils
Fossil evidence by Nova PBS
Fossil Record of Stickleback Evolution by HHMI

Homologous structures
The pentadactyl limb by Ridley

Natural selection
Natural selection lab by PhET
Natural selection by
Education development center


Nature of science

Looking for patterns, trends and discrepancies—there are common features in the bone structure of vertebrate limbs despite their varied use. (3.1) [See the presentation for details, covered by 5.1.A2]

Theory of knowledge

Evolutionary history is an especially challenging area of science because experiments cannot be performed to establish past events or their causes. There are nonetheless scientific methods of establishing beyond reasonable doubt what happened in some cases. How do these methods compare to those used by historians to reconstruct the past?
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.Creative Commons License
Proudly powered by Weebly