Bioknowledgy
questioning, investigating and understanding
  • Home
    • About
  • IB Biology
    • Syllabus
    • General Resources
    • Practical scheme of work >
      • Practical activities (Labs)
      • Individual investigation
      • IB Write
  • Core
    • 1. Cell biology >
      • 1.1 Introduction to cells
      • 1.2 Ultrastructure of cells
      • 1.3 Membrane structure
      • 1.4 Membrane transport
      • 1.5 The origin of cells
      • 1.6 Cell division
    • 2. Molecular biology >
      • 2.1 Molecules to metabolism
      • 2.2 Water
      • 2.3 Carbohydrates and lipids
      • 2.4 Proteins
      • 2.5 Enzymes
      • 2.6 Structure of DNA and RNA
      • 2.7 DNA replication, transcription and translation
      • 2.8 Cell respiration
      • 2.9 Photosynthesis
    • 3. Genetics >
      • 3.1 Genes
      • 3.2 Chromosomes
      • 3.3 Meiosis
      • 3.4 Inheritance
      • 3.5 Genetic modification and biotechnology
    • 4. Ecology >
      • 4.1 Species, communities and ecosystems
      • 4.2 Energy flow
      • 4.3 Carbon cycling
      • 4.4 Climate change
    • 5. Evolution and biodiversity >
      • 5.1 Evidence for evolution
      • 5.2 Natural selection
      • 5.3 Classification of biodiversity
      • 5.4 Cladistics
    • 6. Human physiology >
      • 6.1 Digestion and absorption
      • 6.2 The blood system
      • 6.3 Defence against infectious disease
      • 6.4 Gas exchange
      • 6.5 Neurons and synapses
      • 6.6 Hormones, homeostasis and reproduction
  • Additional higher level (AHL)
    • 7. Nucleic acids >
      • 7.1 DNA structure and replication
      • 7.2 Transcription and gene expression
      • 7.3 Translation
    • 8. Metabolism, cell respiration and photosynthesis >
      • 8.1 Metabolism
      • 8.2 Cell respiration
      • 8.3 Photosynthesis
    • 9. Plant biology >
      • 9.1 Transport in the xylem of plants
      • 9.2 Transport in the phloem of plants
      • 9.3 Growth in plants
      • 9.4 Reproduction in plants
    • 10. Genetics and evolution >
      • 10.1 Meiosis
      • 10.2 Inheritance
      • 10.3 Gene pools and speciation
    • 11. Animal physiology >
      • 11.1 Antibody production and vaccination
      • 11.2 Movement
      • 11.3 The kidney and osmoregulation
      • 11.4 Sexual reproduction
  • Options
    • A. Neurobiology and behaviour >
      • A.1 Neural development
      • A.2 The human brain
      • A.3 Perception of stimuli
      • A.4 Innate and learned behaviour (AHL)
      • A.5 Neuropharmacology (AHL)
      • A.6 Ethology (AHL)
    • B. Biotechnology and bioinformatics
    • C. Ecology and conservation >
      • C.1 Species and communities
      • C.2 Communities and ecosystems
      • C.3 Impacts of humans on ecosystems
      • C.4 Conservation of biodiversity
      • C.5 Population ecology (AHL)
      • C.6 Nitrogen and phosphorus cycles (AHL)
    • D. Human physiology
  • Giving back - BioKQQAnswers

Essential idea: Meiosis leads to independent assortment of chromosomes and unique composition of alleles in daughter cells.

The family portrait shows large amounts of variation within a family despite sharing a lot of genes. This shows the potential of crossing over and independent assortment to create near infinite variation in gametes and hence in offspring too.

Understandings, applications and skills

10.1.U1 Chromosomes replicate in interphase before meiosis.
10.1.U2 Crossing over is the exchange of DNA material between non-sister homologous chromatids.
10.1.U3 Crossing over produces new combinations of alleles on the chromosomes of the haploid cells.
10.1.U4 Chiasmata formation between non-sister chromatids can result in an exchange of alleles.
10.1.U5 Homologous chromosomes separate in meiosis I.
10.1.U6 Sister chromatids separate in meiosis II.
10.1.U7 Independent assortment of genes is due to the random orientation of pairs of homologous chromosomes in meiosis I.
10.1.S1 Drawing diagrams to show chiasmata formed by crossing over. [Diagrams of chiasmata should show sister chromatids still closely aligned, except at the point where crossing over occurred and a chiasma was formed.]
[Text in square brackets indicates guidance notes]

Presentation and notes

The presentation is designed to help your understanding. The notes outline is intended to be used as a framework for the development of student notes to aid revision.
Download presentation


Vocabulary

Correct use of terminology is a key skill in Biology. It is essential to use key terms correctly when communicating your understanding, particularly in assessments. Use the quizlet flashcards or other tools such as learn, scatter, space race, speller and test to help you master the vocabulary.
This quizlet is a contribution from Melissa Pain
Download notes


Quick quiz

Quick quiz Use the BioK Quick Quiz on 10.1 Meiosis (as directed) to check your understanding of the topic.

Weblinks

Phases of Meiosis
Phases of Meosis
by the Khan academy
Meiosis by St Olaf
Meosis by Biostudio

Random Orientation and Independent Assortment

Random Orientation by McGraw and Hill
Independent Assortment by Sumanas Inc.


Nature of science

Making careful observations—careful observation and record keeping turned up anomalous data that Mendel’s law of independent assortment could not account for. Thomas Hunt Morgan developed the notion of linked genes to account for the anomalies. (1.8)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.Creative Commons License
Proudly powered by Weebly