Bioknowledgy
questioning, investigating and understanding
  • Home
    • About
  • IB Biology
    • Syllabus
    • General Resources
    • Practical scheme of work >
      • Practical activities (Labs)
      • Individual investigation
      • IB Write
      • Group 4 project
  • Core
    • 1. Cell biology >
      • 1.1 Introduction to cells
      • 1.2 Ultrastructure of cells
      • 1.3 Membrane structure
      • 1.4 Membrane transport
      • 1.5 The origin of cells
      • 1.6 Cell division
    • 2. Molecular biology >
      • 2.1 Molecules to metabolism
      • 2.2 Water
      • 2.3 Carbohydrates and lipids
      • 2.4 Proteins
      • 2.5 Enzymes
      • 2.6 Structure of DNA and RNA
      • 2.7 DNA replication, transcription and translation
      • 2.8 Cell respiration
      • 2.9 Photosynthesis
    • 3. Genetics >
      • 3.1 Genes
      • 3.2 Chromosomes
      • 3.3 Meiosis
      • 3.4 Inheritance
      • 3.5 Genetic modification and biotechnology
    • 4. Ecology >
      • 4.1 Species, communities and ecosystems
      • 4.2 Energy flow
      • 4.3 Carbon cycling
      • 4.4 Climate change
    • 5. Evolution and biodiversity >
      • 5.1 Evidence for evolution
      • 5.2 Natural selection
      • 5.3 Classification of biodiversity
      • 5.4 Cladistics
    • 6. Human physiology >
      • 6.1 Digestion and absorption
      • 6.2 The blood system
      • 6.3 Defence against infectious disease
      • 6.4 Gas exchange
      • 6.5 Neurons and synapses
      • 6.6 Hormones, homeostasis and reproduction
  • Additional higher level (AHL)
    • 7. Nucleic acids >
      • 7.1 DNA structure and replication
      • 7.2 Transcription and gene expression
      • 7.3 Translation
    • 8. Metabolism, cell respiration and photosynthesis >
      • 8.1 Metabolism
      • 8.2 Cell respiration
      • 8.3 Photosynthesis
    • 9. Plant biology >
      • 9.1 Transport in the xylem of plants
      • 9.2 Transport in the phloem of plants
      • 9.3 Growth in plants
      • 9.4 Reproduction in plants
    • 10. Genetics and evolution >
      • 10.1 Meiosis
      • 10.2 Inheritance
      • 10.3 Gene pools and speciation
    • 11. Animal physiology >
      • 11.1 Antibody production and vaccination
      • 11.2 Movement
      • 11.3 The kidney and osmoregulation
      • 11.4 Sexual reproduction
  • Options
    • A. Neurobiology and behaviour >
      • A.1 Neural development
      • A.2 The human brain
      • A.3 Perception of stimuli
      • A.4 Innate and learned behaviour (AHL)
      • A.5 Neuropharmacology (AHL)
      • A.6 Ethology (AHL)
    • B. Biotechnology and bioinformatics
    • C. Ecology and conservation >
      • C.1 Species and communities
      • C.2 Communities and ecosystems
      • C.3 Impacts of humans on ecosystems
      • C.4 Conservation of biodiversity
      • C.5 Population ecology (AHL)
      • C.6 Nitrogen and phosphorus cycles (AHL)
    • D. Human physiology
  • BISV Revision
  • Giving back - BioKQQAnswers

Extended Essays in Biology

Rewarding, fun and challenging describes extended essays in Biology.


Introduction to EEs at DCS

How about this for a starter - if 12 year olds can publish scientific papers you can too.
Take time to review the introductory presentation before developing your EE research question and approach.

Advice

Good advice and documentation
  • Great advice and a template from i-Biology. The template even includes a self-assessment at the back you can use to check your progress.
  • IBO guide to Extended Essays


Before you start in earnest you need an outline. The key components include
  • Background to your extended essay
  • Formulating a hypothesis is not needed, but you might find it helpful
  • A rough method, the key being a good idea of how you will measure your dependent variable
  • Preliminary experiments will help you refine your method


Reading scientific papers
How to Read a Scientific Paper from the American Society of Plant Biologists is a good starting point. You will be producing in effect a scientific paper for your EE plus you will need to read and understand scientific papers if you are going to use them to support your research,
EE Marking Rubric
This rubric containing 'elements', guiding statements and questions based on the Biology specific EE advice and examiners reports from IBO.


It can be used both for student self-assessment and as a basis for marking EE and giving feedback. The rubric provides a useful framework, but feedback should not be limited by it.


The marking rubric is not an absolute tool, but a useful guide that can be used to judge completeness and how to improve a draft. Extended essays are graded externally and any idea of success gained from the rubric should take that into consideration.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.Creative Commons License
Proudly powered by Weebly